73,173 research outputs found

    Asymptotic minimax risk of predictive density estimation for non-parametric regression

    Full text link
    We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics of minimax risk in the case of Gaussian errors. We derive the convergence rate and constant for minimax risk among Bayesian predictive densities under Gaussian priors and we show that this minimax risk is asymptotically equivalent to that among all density estimators.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ222 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    A Compact Third-order Gas-kinetic Scheme for Compressible Euler and Navier-Stokes Equations

    Full text link
    In this paper, a compact third-order gas-kinetic scheme is proposed for the compressible Euler and Navier-Stokes equations. The main reason for the feasibility to develop such a high-order scheme with compact stencil, which involves only neighboring cells, is due to the use of a high-order gas evolution model. Besides the evaluation of the time-dependent flux function across a cell interface, the high-order gas evolution model also provides an accurate time-dependent solution of the flow variables at a cell interface. Therefore, the current scheme not only updates the cell averaged conservative flow variables inside each control volume, but also tracks the flow variables at the cell interface at the next time level. As a result, with both cell averaged and cell interface values the high-order reconstruction in the current scheme can be done compactly. Different from using a weak formulation for high-order accuracy in the Discontinuous Galerkin (DG) method, the current scheme is based on the strong solution, where the flow evolution starting from a piecewise discontinuous high-order initial data is precisely followed. The cell interface time-dependent flow variables can be used for the initial data reconstruction at the beginning of next time step. Even with compact stencil, the current scheme has third-order accuracy in the smooth flow regions, and has favorable shock capturing property in the discontinuous regions. Many test cases are used to validate the current scheme. In comparison with many other high-order schemes, the current method avoids the use of Gaussian points for the flux evaluation along the cell interface and the multi-stage Runge-Kutta time stepping technique.Comment: 27 pages, 38 figure

    Sparsity-Based Kalman Filters for Data Assimilation

    Get PDF
    Several variations of the Kalman filter algorithm, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are widely used in science and engineering applications. In this paper, we introduce two algorithms of sparsity-based Kalman filters, namely the sparse UKF and the progressive EKF. The filters are designed specifically for problems with very high dimensions. Different from various types of ensemble Kalman filters (EnKFs) in which the error covariance is approximated using a set of dense ensemble vectors, the algorithms developed in this paper are based on sparse matrix approximations of error covariance. The new algorithms enjoy several advantages. The error covariance has full rank without being limited by a set of ensembles. In addition to the estimated states, the algorithms provide updated error covariance for the next assimilation cycle. The sparsity of error covariance significantly reduces the required memory size for the numerical computation. In addition, the granularity of the sparse error covariance can be adjusted to optimize the parallelization of the algorithms
    • …
    corecore